
Solfec Performance Assessment Report

Document Information
Reference Number POP AR 83
Author Nick Dingle (NAG)
Contributor(s) Wadud Miah (NAG), Jon Gibson (NAG)
Date 11/12/17

Notices: The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 676553.

c• 2015 POP Consortium Partners. All rights reserved.

POP Ref.No. POP AR 83 CONTENTS

Contents

1 Background 3

2 Application Structure 3

3 Region of Interest (RoI) 3

4 Scalability 5

5 E�ciency 5

6 Load Balance 6

7 Computational Performance 7

8 Communications 8

9 Summary of Observations 9

References 11

2

POP Ref.No. POP AR 83

1 Background
Applicants Name: Tomasz Koziara
Application Name: Solfec
Programming Languages: C and Python
Programming Model: MPI
Source Code Available: Yes
Input data: array-of-cubes.py
Performance study: General code audit

The execution traces used in this audit were gathered on CINECA’s Marconi machine, which
is a Lenovo NeXtScale cluster containing 1 512 nodes in 21 racks. Each node has 2x 18-core
Intel Xeon E5-2697 v4 (Broadwell) 2.30GHz CPUs with 128GB of RAM and is connected by a
100Gb/s Intel Omnipath network. The 54 432 cores have a total peak performance of 2 PFlop/s.

The array-of-cubes.py example is a finite element multibody structural problem in which
a stack of cubes is subject to a sine sweep acceleration signal. We set the array edge size
parameter, M, to 32 and the cube mesh edge size parameter, N, to 4. This generates 32 774
bodies, 12 288 036 degrees of freedom and approximately 585 000 constraints. These values are
representative of the size of problems currently analysed by Solfec users.

Traces were recorded using Extrae 3.4.3 and analysed using Paraver 4.6.3. Due to the
amount of trace data generated, especially at large core counts, we used Extrae’s API to limit
collection to only the Region of Interest defined in Section 3.

2 Application Structure
Solfec is a computational contact dynamics code written in C and Python and parallelised with
MPI. It also incorporates several third-party codes written in C, C++ and Fortran. Solfec in-
cludes mesh, convex polyhedra, sphere and ellipsoid based shapes, linear elastic first order finite
elements, pseudo-rigid and rigid kinematics, velocity-based Signorini-Coulomb contact/impact
law, and parallel time stepping combined with a simple dynamic load balancing. For this au-
dit we compiled Solfec with Intel MKL for BLAS and LAPACK routines [1], Zoltan for load
balancing [2], and HDF5 for IO [3].

3 Region of Interest (RoI)
The Region of Interest (RoI) is 2 timesteps from the middle of the simulation, and Figure 1
shows a timeline of its execution on 1 node (36 cores). There are two phases in each timestep:

1. A long period of computation to update the domain and local dynamics (coloured blue).

2. The evaluation of the constraints using an iterative Newton solver. This is visible as more
frequent communications (coloured orange) interspersed with short periods of computation
(coloured blue).

The first timestep contains 7 iterations of the Newton solver; the second contains 8.
Figure 2 shows the timeline of the useful duration (actual computation) in the RoI on 1

node (36 cores) and Figure 3 shows the corresponding MPI call timeline. Figure 2 is coloured
depending on the length of time spent in computation, from short (green) to longer times (blue).

3

POP Ref.No. POP AR 83

Figure 1: Timeline of the Region of Interest on 1 node (36 cores).

Figure 2: Useful duration timeline of the Region of Interest on 1 node (36 cores).

Figure 3: MPI call timeline of the Region of Interest on 1 node (36 cores).

The structure of the timesteps and Newton iterations is clearly visible, with the two phases
within a timestep delineated by an MPI Allgather. Communication in the first phase is largely
confined to MPI Alltoall, while the Newton solver uses MPI Irecv, MPI Isend, MPI Waitall
and MPI Allreduce.

4

POP Ref.No. POP AR 83

Figure 4: Speed-up of the Region of Interest.

Nodes
1 5 10 15 20

Global E�ciency 0.81 0.60 0.53 0.45 0.41
Computational E�ciency 1.00 0.98 0.96 0.88 0.87
Parallel E�ciency 0.81 0.61 0.55 0.51 0.47

Load Balance 0.89 0.79 0.74 0.73 0.65
Communication E�ciency 0.91 0.77 0.74 0.70 0.71

Serialisation E�ciency 0.93 0.94 0.87 0.81 0.81
Transfer E�ciency 0.98 0.82 0.85 0.87 0.88

IPC E�ciency 1.00 1.06 1.10 1.06 1.10
Instructions E�ciency 1.00 0.93 0.87 0.83 0.80

Table 1: E�ciency metrics for the Region of Interest.

4 Scalability
Figure 4 shows the speed-up of the RoI on up to 20 nodes (720 cores). We observe that speed-up
increases with increasing node count, but that it remains below 80% of the ideal.

5 E�ciency
We quantify the performance of the RoI using the metrics presented in Table 1. The values
are e�ciencies that generally range from 0 to 1, with 1 being the ideal and 0.8 considered the
cut-o� for ‘good’ performance. We define useful time to be time within computation only, e.g.
excluding MPI and IO, and useful instructions therefore refers to instructions executed within
computational regions only. The e�ciencies are defined as follows:

• Global E�ciency is the product of Computational E�ciency and Parallel E�ciency.
5

POP Ref.No. POP AR 83

• Computational E�ciency shows how the total time spent in computation varies with the
number of processes. It is a relative scaling of total time in computation compared to the
value on the smallest number of MPI processes.

• Parallel E�ciency is the product of Load Balance, Serialisation and Transfer E�ciencies.

• Load Balance is the ratio of the average time processes spend in computation to the
maximum time.

• Communication E�ciency is the product of Transfer and Serialisation E�ciencies.

• Serialisation E�ciency measures the overhead incurred from processes waiting for other
communication partners to arrive.

• Transfer E�ciency gives the amount of time lost to transferring data.

• Instruction E�ciency compares the total number of useful instructions executed for dif-
ferent numbers of processes relative to the value on the smallest number of MPI processes.

• IPC is the number of useful instructions executed per cycle and the IPC E�ciency shows
how its value varies with process count. In Table 1, the values of computational, instruc-
tions and IPC e�ciencies are all calculated relative to the single node performance.

A more detailed description of these metrics can be found on the POP website [4].
We observe that the main source of ine�ciency is Load Balance, which has dropped to 0.65

on 20 nodes (740 cores). Communication E�ciency is also low, which suggests that the code is
spending a large amount of time in MPI calls; we will investigate this in more detail Section 8.
Serialisation E�ciency and Transfer E�ciency both remain above 0.8 in all cases, although
Serialisation E�ciency has declined to 0.81 on 20 nodes. Interestingly Transfer E�ciency drops
from 0.98 to 0.82 when going from 1 node to 5 nodes, but then increases again with increasing
core count.

The decline in Computational E�ciency is due to the falling Instruction E�ciency, which
reflects the fact that the total number of instructions executed grows as the number of nodes
is increased. This suggests that there may be some replication of calculations across processes.
IPC is actually higher on multiple node runs than on 1, and this somewhat o�sets the rise in
the number of instructions. This rise in IPC may be because the smaller problem sizes on each
process at higher process counts are more cache e�cient.

6 Load Balance
Section 5 identified that Load Balance was a major source of ine�ciency. To investigate to
what extent this can be attributed to the way in which work is divided across processes, we
plot histograms of instructions and useful duration in Figure 5. These display binned values
for the two metrics, with darker colours signifying that the code had more of those periods of
computation or more often executed that number of instructions. The y-axis is processes and
the x-axis is bin values.

We observe that there is considerable variation in the number of instructions executed
and in the corresponding durations of periods of computation. This suggests that the decline
in Load Balance E�ciency can be attributed to increasingly unbalanced computational load.
Further work could be conducted in a POP Performance Plan or Proof-of-Concept to identify
the routines that su�er most from load imbalance and to try di�erent approaches (e.g. di�erent
Zoltan parameters or other load balancing tools) to see if they lead to any improvement.

6

POP Ref.No. POP AR 83

(a) Useful duration

(b) Instructions

Figure 5: Useful duration and instructions histograms on 20 nodes (720 cores).

7 Computational Performance
Table 1 contains two metrics investigating how well the computational aspects of the code
scale: IPC E�ciency and Instructions E�ciency. Table 2 presents the corresponding absolute
values of IPC and number of instructions. Ideally the number of instructions should remain
constant when the number of processes increases because we are strong-scaling the problem
under analysis, but here we see that the number of instructions actually increases with the

7

POP Ref.No. POP AR 83

Nodes
1 5 10 15 20

IPC 1.15 1.22 1.26 1.22 1.27
Instructions (◊106) 4.79 5.15 5.48 5.79 6.00

Table 2: Absolute values of IPC and number of instructions.

Nodes
1 5 10 15 20

MPI Allreduce 9.4% 18.9% 18.1% 22.4% 20.8%
MPI Alltoall 4.0% 05.6% 07.0% 09.6% 12.7%
MPI Allgather 3.8% 06.6% 09.6% 09.0% 09.8%
MPI Waitall 2.0% 06.5% 07.5% 05.6% 07.1%

Table 3: Average percentage of runtime of MPI calls in the RoI. We only list routines that
consume >1% runtime.

Nodes
1 5 10 15 20

MPI Allreduce 8.2 8.2 8.2 8.2 8.2
MPI Alltoall 12 12 12 12 12
MPI Allgather 4 4 4 4 4
MPI Waitall 188 042.5 106 568.5 82 522.7 71 301.3 62 056.1

Table 4: Average bu�er size in bytes per MPI call on each process for the most time-consuming
routines shown in Table 3.

number of processes. A common cause of growth in the number of instructions is replication of
computation across processes, and in this audit there may also be overheads from using Zoltan.
We also observe that IPC improves as the number of processes increases. As hypothesised in
Section 5, this may be because the cache e�ciency improves at higher process counts.

The reasons for the growth in the number of instructions could be investigated in a POP
Performance Plan. We could use approaches such as clustering or timeline analysis with Extrae
and Paraver to identify areas of the code which experience the largest rises in instructions, and
use this information to target further optimisations.

8 Communications
Table 3 shows the percentages of runtime spent in MPI calls in the RoI. MPI Allreduce is the
most time-consuming MPI routine, taking up approximately 20% of the RoI’s runtime from the
5 node execution onward. This routine is used in the iterative Newton solver.

Table 4 shows that the average bu�er sizes in bytes per MPI Allreduce call on each process
is constant with increasing node counts. As each process is contributing only a single double-
precision floating point number (8 bytes) to the reduction, we suspect that the majority of time
in the routine is spent waiting for late arrivals caused by local computational load imbalance
rather than actually transferring the data.

We investigate this supposition by examining the performance of the code on a simulated
ideal network with zero latency and infinite bandwidth. Figure 6 compares the timelines of
MPI calls in the RoI on 20 nodes (720 cores) on the real and ideal networks. We see that the

8

POP Ref.No. POP AR 83

Figure 6: Original (top) and simulated ideal (bottom) MPI call timeline of the Region of Interest
on 20 nodes (720 cores).

amount of time in MPI is not greatly reduced by the ideal network, which suggests that the
time required to transfer the data is not the dominant factor. This conclusion is supported by
the relatively good values for Transfer E�ciency in Table 1.

It would be interesting to see whether Solfec’s performance could be improved by replacing
MPI Allreduce with MPI Iallreduce/MPI Wait. This work could be accomplished in a POP
Proof-of-Concept study. If the source of the MPI Allreduce calls is the HYPRE library [5]
(which Solfec may use within its Newton solver) then it could be worth investigating the scal-
ability of other solvers. For example, the PETSc library [6] includes an implementation of
pipelined GMRES that replaces MPI Allreduce with MPI Iallreduce/MPI Wait [7].

9 Summary of Observations
We observed that the main source of ine�ciency in Solfec was Load Balance. The histograms
in Section 6 show that there was considerable variation between processes in the numbers of
instructions executed during computational portions of the code. We also saw that the total
number of instructions executed grew as the number of MPI processes increased. Additionally,
Solfec spent about 20% of its time in MPI Allreduce when running on more than 1 node.

We recommend that further studies should be conducted to:

• Ascertain which routines su�er most from load imbalance and investigate whether chang-
ing the partitioning parameters or load balancing tool leads to any improvement. The
version of Solfec used in this audit uses Zoltan for load balancing, and various control pa-
rameters are passed through multiple calls to Zoltan Set Param(). Changing the values
of these parameters may improve the load balance. Solfec can be built to use Dynlb [8]
instead of Zoltan, and so the potential improvement that this o�ers could also be assessed.

9

POP Ref.No. POP AR 83

• Identify the root cause of the growth in number of instructions executed. This will require
identifying the code regions that are most responsible for the increase in instructions (using
further tracing and analysis) and using this information to guide future optimisations.

• Investigate whether the Solfec’s performance could be improved by replacing MPI Allreduce
with MPI Iallreduce and MPI Wait. This might be achieved by using a di�erent iterative
solver such as pipelined GMRES.

10

POP Ref.No. POP AR 83 REFERENCES

References
[1] Intel Math Kernel Library. https://software.intel.com/en-us/mkl.

[2] Erik Boman, Karen Devine, Lee Ann Fisk, Robert Heaphy, Bruce Hendrickson, Vitus Leung,
Courtenay Vaughan, Ümit Çatalyürek, Doruk Bozdag, and William Mitchell. Zoltan home
page. http://www.cs.sandia.gov/Zoltan.

[3] The HDF Group. Hierarchical Data Format, version 5, 1997-2017. http://www.hdfgroup.
org/HDF5/.

[4] E�ciency metrics in a POP performance audit. https://sharepoint.ecampus.
rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf.

[5] HYPRE: Scalable linear solvers and multigrid methods. https://computation.llnl.gov/
projects/hypre-scalable-linear-solvers-multigrid-methods/software.

[6] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschel-
man, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Dave A. May, Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini,
Hong Zhang, and Hong Zhang. PETSc web page. http://www.mcs.anl.gov/petsc.

[7] Ichitaro Yamazaki, Mark Hoemmen, Piotr Luszczek, and Jack Dongarra. Improving perfor-
mance of GMRES by reducing communication and pipelining global collectives. In Proceed-

ings of the 18th IEEE International Workshop on Parallel and Distributed Scientific and

Engineering Computing (PDSEC 2017), Orlando FL, June 2017.

[8] Dynlb: a minimalist dynamic load balancer for points in 3D. https://github.com/
tkoziara/dynlb.

11

https://software.intel.com/en-us/mkl
http://www.cs.sandia.gov/Zoltan
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf
https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
http://www.mcs.anl.gov/petsc
https://github.com/tkoziara/dynlb
https://github.com/tkoziara/dynlb

	Background
	Application Structure
	Region of Interest (RoI)
	Scalability
	Efficiency
	Load Balance
	Computational Performance
	Communications
	Summary of Observations
	References

